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ABSTRACT 

The condition providing the analyticity for continuous locally univalent 

functions of complex variables is established. This generalizes the classi- 

cal Menshoff result on homeomorphic mappings preserving infinitesimal 

circles. 

1. In troduct ion  

The relationship between the basic properties: continuity, monogeneity (exis- 

tence of a complex derivative) and analyticity of a function of complex variables 

has been studied in classical and modern function theory by many mathemati- 

cians. Interest in questions of this type has increased in connection with con- 

structing a theory of quasiconformal mappings and generalized analytic func- 

tions. The aim of the paper is to present a new condition which provides the 
analyticity of functions. 

As is well known, the analytic functions of a complex variable possess var- 

ious characteristic properties; each of those can be regarded as a definition of 

analyticity. Such properties are, for example: the monogeneity, conformMity of 

mapping, the conditions of Morera's theorem, uniform approximation by poly- 

nomials, etc. 

The classical Cauchy-Goursat theorem says (see, e.g., [8]): 

If  a function f ( z )  of a complex variable z is continuous and monogenic in a 

domain D C C, then it is analytic in D. 

In the terms of real variables, this theorem is formulated as follows: 
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A continuous function f ( z )  = u(x, y)+iv(x,  y) is analytic if the functions u(x, y) 

and v(x, y) are differentiable, and Cauchy-Riemann equations 

Ou Ov Ou Ov 
(1) Ox Oy ' Oy Ox 

are satisfied everywhere in D. 

The monogeneity of f(z),  i.e., the existence of the limit 

(2) lim f ( z  + h) - f ( z )  = f'(z), 
h-~0 h 

is equivalent to the existence of both the limits 

(3) lim f ( z  + h) - f ( z )  
h--*0 h 

(independence of stretching from direction) and 

(4) lim Arg f ( z  + h) - f ( z )  
h---+0 h 

(preserving the angles) at the points where f ' ( z )  r O. 
Various generalizations and improvements of the Cauchy-Goursat theorem 

were obtained by Pompeiu, Looman, Montel, Menshoff and other mathemati- 

cians. Those rely on weakening the condition of monogeniety. It was natural to 

find the characterizations of analytic functions either only in terms of stretching 

at a point or only in terms of preserving the angles. 

The first step in this direction was the following theorem of Bohr [1]: 

I f  w = f ( z )  is a continuous locally univalent mapping of a domain D, for which 

a finite limit (3) exists and differs from 0 at almost every point of D, then either 

the function f ( z )  or the conjugate function f ( z )  is analytic in D. 
The next important result is the following theorem of Menshoff [3] based on 

the second fundamental property of a monogenic function (on preserving the 

angles). 

I f  a mapping w = f ( z )  is continuous and locally univalent in a domain D and 

if at almost every point of D, finite limit (4) exists, then the function f (z )  is 

analytic in D. 
Using quasiconformal mappings, Menshoff has obtained in [4] another gener- 

alization of the Bohr theorem. Consider a continuous and locally univalent map- 

ping w = f ( z )  of a domain D of the z-plane onto a domain D* of the w-plane. 

For an arbitrary point z0 C D, take the circle C(zo,r) = {z: Iz - z01 = r} C D, 

and put 
H(zo,r)  = maxlz'-~~ If(z') - f(zo)l 

minlz,,-zol:r l f(z") - f(zo)t" 
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We say that the continuous locally univalent function f ( z ) maps the infinitesimal 
circle C(zo, r) into an infinitesimal circle, if 

lim H(zo, r) = 1. 
r--+0 

Obviously, the last condition is more general than (3). The important Men- 

shoff's generalization of Bohr's theorem is the following result. 

If a function f(z) is continuous and locally univalent in a domain D and maps 
the infinitesimal circles C(z, r) into infinitesimal circles for almost all points 
z E D, then either f(z) or f(z) is analytic in D. 

2. Rad i i  o f  n o r m a l  n e i g h b o r h o o d  s y s t e m s  

We shall need the following notation. 

Let z be an arbitrary point in C. Assume that some closed neighborhood 

Gt(z) of z is defined for any t E (0, 1]. We say that a set of the neighborhoods 

~t(z) of the point z constitutes a n o r m a l  s y s t e m ,  if there exists a continuous 

function v: C ~ R such that v(z) = 0, v(~) > 0 for any ~ # z. Here ~t(z) = 
{~ E C: v(~) <_ t} for a n y t  E (0,1]. Let Ft(z) = {~ E C: v(~) = t} denote 

the boundary of Gt(z). The function v is called the g e n e r a t i n g  func t i on  for 

a given normal system {Gt(z)} (see, e.g., [6]). 

Denote 

r ( z , t )=  inf I ~ - z l ,  ~ ( z , t ) =  sup I ~ - z l .  
cert(~) cert(z) 

These values r(z, t) and 7~(z, t) are equal, respectively, to the minimal and the 

maximal radii of the neighborhood 6t (z). The limit 

(5) A(z) = lim sup 7~(z, t_____~) 
t-~o r (z ,  t) 

is called the r e g u l a r i t y  p a r a m e t e r  of the family {Gt(z), 0 < t _< 1}. Any such 

system {Gt(z)} is called the r eg u l a r  n o r m a l  s y s t e m ,  provided A(z) < co. 

Let now f:  D ~ D* be a homeomorphism of two bounded domains in C, and 

let {Gt(z)} be a normal system of neighborhoods of z E D. One can introduce 

similarly the minimal and the maximal radii for the image of Gt(z) by 

r*(z , t )= inf I f (~ ) -  f(z)l, Ti*(z,t)= sup I f ( r  f(z)l 
CePt(z) cErt(z) 

and 

A* (z) = lim sup ~* (z, t_______~) 
t-~0 r * ( z ,  t )  " 
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In these terms Menshoff's theorem says: 

If  a function f(z)  is continuous and locally univalent in a domain D and if 

A*(z) = 1 at almost every point z E D, then f (z)  is analytic in D. 

3. Main  result  

We now present an essential strengthening of the previous classical theorems. 

Let p be a real fixed number such that  1 _< p < o~. Put  

(6) O(z) = lira mf(B(z ,  T~(z, t))) 
~-~o 7rT~2(z, t)  ' 

where B(z, h) is the disc {( E C : ]( - z[ < h}, and mA denotes the Lebesgue 

two-dimensional measure of a set A. 

THEOREM: If  a function f (z)  is continuous and locally univalent in a domain 

D, and for almost every point z E D there exists a normal regular system of 

neighborhood {Gt(z)} C D such that either the inequality 

(7) lim sup T~* (z, t) ( T~(z, t) ~ p-1 
 r*(z,t)J < lO(z)l(2-p)/2 

holds for 1 <_ p <_ 2 or the inequality 

(T~*(z~t) p-l T~(z,t) 
(8) limsup \ t _ ~ o  r(z,t) ) r*(z,t) <- [O(z)](P-2)/2 

holds for 2 <_ p < c~, then either f(z)  or the conjugate function f(z)  is analytic 

inD.  

We shall prove the assertion of the theorem for the function f (z)  itself, 

assuming that  f is orientation preserving. The proof for f (z)  is accomplished 

in a similar way. 

The next remark is that  for definiteness we can restrict ourselves by the case 

of inequality (8), i.e., by 2 _< p < c~. The case 1 <_ p < 2 involving the inequality 

(7) is treated in a similar way. 

We precede the proof of the theorem by several lemmas. 

LEMMA 1: Under the assumption of Theorem, the function f ( z ) is differentiable 

almost everywhere in D, and for any Borel set E C D we have 

(9) I ]f'(z)[2dxdy < oc. 

E 
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Proof: Denote 
k(z) = limsup f ( z  + h) - f(z)  

h--+O h " 

To show that  f (z)  is differentiable almost everywhere in D, one must verify, 

in view of Stepanov's theorem [7], that  k(z) < oo almost everywhere in D. 

Consider a sequence {zn}, n = 1, 2 , . . . ,  of points zn E D such that  zn --+ z as 

n --+ oo, zn : z for all n, and 

I:(z )-:(z)l/lzn-zt 

Let v be the generating function for the system of neighborhood Gt = Gt(z). 
Put tn = V(Zn) and w~ = f(z~). Obviously, zn and Wn are the boundary points 

of Gt~ and f(~t~), respectively, and 

IZn--Zl>r(Z, tn), IWn--Wl<_Tq.*(Z, tn). 

This yields 

(lO) 
Iw n - w I 

IZn - z I 

re*(z,t ) <_ 
r(z,t ) 

rrn.(z to), p--1 T (Z, tn)11/o,-1} [r*(z, tn) 
- - L \  r(Z,  tn)  ] r*(Z,  tn)J  L ~ ( z ~ t ~ J  " 

The set Gt~ is contained in the disc centered at z with radius T/(z, tn), while 

f(Gtn ) clearly contains the disc of radius r* (z, tn) centered at w. Thus we obtain 

n(Z, tn)J 
< mf(B(z ,  Ti(z, tn))) 
- mB(z,T~(Z, tn)) 

Substitute this bound for the ratio r*(z, tn)/T~(z, tn) into (10) and let n tend 

to infinity. Therefore the limit of the first factor in the right-hand side of (10) 

can be estimated by (8), which provides as a result the inequality 

(11) k ( z )  ~ O1/2(z). 

By Stepanov's theorem, f has a total differential at almost all points of D. 

To establish (9), observe that  the equality (6) can be regarded as the dif- 

ferentiation of the set function mf(B(z ,  ~(z ,  t))) over discs. By the Lebesgue 

theorem (see, e.g., [9], p. 82), this limit exists and is finite almost everywhere 

in D. Moreover, for every Borel set E C D, we have 

/ O(z)dxdy <_ mr(E).  
E 
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Combining this with inequality (11), one concludes that  

f lf'(z)ledxdy < m f ( E )  < oo. 

E 

The lemma is proved. I 

Following [8], we call the complex number ~ a d e r i v e d  n u m b e r  of the 

function f ( z )  at the point z if there is a sequence of numbers {AZn}, 

AZn --* O,n = 1 ,2 , . . . ,  such that  

lim f ( z  + Azn) - f ( z )  = ~. 
n -"-+ oo A Z n 

Let f be differentiable at a point z E D. Take A z  = A x  + iAy  = IAzie ~ so 

that  z + Az E D. Noting that  

A f  = f ( z  -4- Az) - f ( z )  = f~Az  + f2A2 + o(Az), 

where 1 { Ou Ov i ( Ov Ou 

l ( O u  Ov)+-2i(Ov-~=-~-Ou) 
o x  o y  u ~  + u y  ' 

and lira A f  
az-~0 ~ = fz + f~" e-2i% 

one obtains that  the absolute values of the smallest and largest derived numbers 
of f ( z )  at z are equal, respectively, 

I f  = Ilfzl- Ihl{, L f  = Ifz1-4-{f~l. 

LEMMA 2: Ii c f is orientation preserving and satist~es the condition of Theorem, 

then for almost all points z E D we have equality 

Ifzl + If~l _ 1. 
I f ~ l -  If~l 

Proof'. Let z0 be a point of D at which f is differentiable. Fix Az so that  

z0 + Az E D. For simplicity of notations, we can assume that  f(zo) = zo = 0 

as well as 

A-~Z ---+El and tA_~ ---+If as A z ---+0. 

This can be achieved by a suitable choice of the coordinate axes. 

Choose the values a(t) > 0 and b(t) > 0 so that  a(t)Az E Ft(0) and 

b(t)A5 E Ft(0). Then 

r(0, t )  < la(t)AzI, R(O,t) > Ib(t)A2 I, 



Vol. 156, 2006 ON GENERALIZATION OF MENSHOFF'S THEOREM 249 

r*(O,t) < If(b(t)A2)l, R*(O,t) > If(a(t)/Xz)l. 

Combining these inequalities with (8), we obtain 

(12) lim ([f(a(t)Az)[ 
p - 1  ) [0(0)]('--2)/~ <_ 

t ~o l a ( t ) ~ z l  J I / ( b ( t ) A ~ ) l  

In view of differentiability at 0, the quantity O(0) is equal to the Jacobian of f 

at 0, and 

0(0) = J(O, f )  = Ifzl 2 - I A [  2 _> o. 

Then (12) yields 

I A ( O ) l + l A ( O ) l  = 1. ,, 
I A ( o ) l -  IA(O)l 

COROLLARY: The function f(z) is C-differentiable almost everywhere in D. 

LEMMA 3: The function f is absolutely continuous on Nnes (ACL). 

Proos Let II be an open rectangle whose sides are parallel to the coordinate 

axes and let II C D. Denote the vertices of II by 4k ~-iTm, k, m = 1, 2. We shall 

prove that  for almost all y C (71,72) the mapping f admits the N-proper ty  on 

the segments p(y) connecting the points Zl = 41 + iy and z2 = 42 + iy. This 

means that  the image of every set on p(y) of zero measure also has measure 

zero. 

Fix for z C D a normal regular system {6t(z)} of neighborhoods of z such 

that  6t (z) C D for any t E (0, 1]. It follows from (8) that  for sufficiently small 

t > 0, we have 

(la) t) 7 (z, t)))](~-2)/2 
\ ~(z,-t 7 / r*(z,t-----) <- k mB(z,~(z , t ) )  l ' 

where 

(14) ~(A) = mf(A) + ~(t)mA; 

here ~(t) ~ 0 for t ~ 0. It is easy to show that  

r  = O(z). lim sup 
~-.o mB(z,7~(z,t)) 

Put  O(A) = rnf(A) and denote by I the projection of YI onto the coordinate 

axis y. Note that  II = p(y) • I. Using the set functions �9 and @, we define the 

functions of open sets A C I,  letting 

~(A) = r  • p(y)), ~(A) = ~(A • p(y)). 
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It follows from [5] that  for almost all y E I the values 

(~(B1 (y, h)) ~(B1 (y, h)) 
} ' (y)  = lim ~ ' (y)  = lim 

h--+0 2h ' h-+0 2h ' 

where Bl(y,h) = {z E I : l I m z -  Yl < h}, are finite. 

Now we suppose that,  for some y, the function f does not satisfy the N- 

property on p(y) and reach a contradiction. In view of our assumption, there 

is a closed set E C p(y) of zero measure for which HI(f(E)) > 0, where H1 is 

the one-dimensional Hausdorff measure in C. We shall show that  in this case 

we must have 
[ { , , ( y ) ] ( p - 2 / / 2 ( p - 1 )  = 

To this end, fix a positive integer k, and let Ek be a set of all ~ E E for which 
oo E oo r(~, 1) > 1/k. Since E = [.Jk=l k, f(E) = [.Jk=l f (Ek) ,  we have 

o o  

gl(f(E)) <_ E gl(f(Ek)). 
k----1 

The assumption HI(f(E)) > 0 yields that  Hl(f(Ek)) > 0 at least for one k. 

We fix such k and put  ~ = Hl(f(Ek)). Then for every system of discs covering 

f(Ek) the sum of their radii is not less than ~//2. 

Let us divide the low side of [{1,{2] of the rectangle II (and simultaneously 

the interval p(y)) into 2N equal parts, choosing an integer N > 0 so that  

~2 -- ~I 1 
2N k 

Let VN be the union of all segments in the partition which contains points of 

E. Since the one-dimensional Lebesgue measure of the set E equals 0 and this 

set is closed, it follows that mlVN ~ 0 as N ---* oo. For any c > 0, there exists 

an integer N0(~) > 0 such that  

(15) t o W N  < e 

for any N > No. We fix ~ and suitable N _> No for which the inequality (15) 

holds. 

Select on VN all segments which contain the points of Ek and choose on each 

Ek one of its points. Denote these points by 

~ 1 , .  �9 . , ~ l ,  l < / < 2 N .  

Now divide the segment p(y) into 2N(n + 1) subintervals 

(16) a l ,  o ' 1 ,  �9 �9 �9 , O'2N(n+l) 
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choosing n so large that it dominates all regularity parameters of the families 

{Gt(r (see (5)); 

n > A(~i), i = l , . . . , 1 .  

Put  

(17) 

and 

~2 - -  ~1 

P - 2N(n + 1) 

For each i = 1 , . . . , l ,  there is a value t~ E (0,1) so that r(~i,ti) = p. The 

sought value ti can be found as follows. Let vi be the generating function of the 

neighborhood system {Gt(~i), 0 < t _< 1}. Then the largest value of vi in B(~i, p) 
is equal to the desired value ti. Denote ~i = Gt~ (~i). The sets ~i , i  = 1 , . . . ,  l, 

cover the original set Ek. Since the disc of radius 7~*(~i, ti) centered at f(~i) 
contains the set f (Em ~ 6i), we obtain 

l 

i=1  

Now, following [4], we distribute the segments (16) onto 2(n + 1) classes, 

sending the segments 

o'2(n+l)j+~, j = 0, 1 , . . . ,  N - 1, 

into s-class, s = 1, 2 , . . . ,  2(n + 1). Simultaneously, the points (1 , - . . ,  ~l are also 

distributed onto these 2(n + 1) classes. 

After such an operation, we obtain that at least for one of these partition 

classes 
q 

E n * ( ( i , t i )  > ~//4(k + 1), q _< l, 
i=1  

qp < m~ Vg < c; 

here ~1, .- . ,  ~q are all the points of this class. 

By the above construction, we have 

]~i - -  ~ j l  > ~2 - -  ~1 ~2 - -  ~1 - -  n(~2 - ~1) 
- N N ( n  + 1) N ( n  + 1) 

for any i ~ j , i , j  <_ q. Note that  the discs B(~i,np) are disjoint and Gi C 

B(~i,kp); hence Gi are also disjoint. Consider now the rectangle I I p =  

BI(y, np) • p(y). Since the set f (~i)  contains the disc B(f(~i) ,  r*(~i, ti)), 

q 
,2   (Hp) >_ 

i=1  
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For sufficiently small ti > 0, the inequality (13) implies the relation 

n*(r < 

7r(2-p)/2(p--1) [ff~O(B(~,, r(~i, ti)))] (p-2)/2(p-1)?~*x/(v-x) (~i, ti) T~-I (~i, ti)r(~i, ti) 

for every i = 1 , . . . , q .  Summarizing these inequalities and applying H61der's 

inequality with the degrees (p - 2)/2(p - 1), 1/2(p - 1), and 1/2, one obtains 

q 

(19) E Tt*(r <_ 
i=l  

7r(2_p)/2(p_l) [~=1 ~(p-2)/2(p--1)[ q 11/2(p--1) ,2 ql/2. 
n kO(B(~i,r(~i,ti)))] E r (~i, ti)] 

i----1 

The first factor in the right-hand side of (19) can be estimated applying the 

relation (14). The second one is estimated by (18). This results in 

q 
E T~* (~i, ti) <_ n---~ [gJ(IIp)](P-2)/2(p-1)[g2(~p)] 1/2(p-1)q1/2. 
i=l 

Combining this inequality with (17), we set the low estimate 

[v(n )l (p-2)/:(p-1) c 
2np J L~np ] >- (qp)l/----~' 

with a constant c not depending on N. Taking into account that qp < r and 

letting p ~ 0, we obtain 

c 
(20) [~, (y)] (p--2)/2(p--1)[(~, (y)] 1/2(p--1) ~> E 1/-''~" 

The inequality (20) must hold for arbitrary e > 0. This yields that  for every 

point y E I, we have the equality 

[~,(y)](p--2)12(p--1) [~,(y)]112(p--X) : 00, 

which contradicts the fact that  the derivatives ~ ' (y)  and ~)'(y) exist and are 

finite almost everywhere on I. 

This contradiction proves that the mapping f admits the N-property on p(y) 
at almost all points y E I. | 

LEMMA 4: For a rectangle II ~ D with the sides parallel to the coordinate axes, 
we have the equality 

J f(z)dz = O. 
OH 
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Proof: By Lemma 1 the derivative f~(z) is integrable over any Borel set E ~ D, 

i.e. ffE If'(z) I dxdy < oo. This implies that  all partial derivatives Ou/Ox, Ou/Oy, 
Ov/Ox, Ov/Oy are also integrable. Consider an arbitrary rectangle YI @ D 

with the sides parallel to the coordinate axes. Denote its vertices by ~k + i~]m, 
k, m = 1, 2. Then, by Fubini's theorem, 

~2 ~ 

f fn Ou Ou ~dxdy= f dy f ~dx (u = Re f(z)), 

where the inner integral exists for almost all y E [~]1, ~]2]. On the other hand, the 

function u(x, y) is ACL in H, i.e. u(x, y) is absolutely continuous with respect 

to x for almost all y E [~]1, ~2]. Thus 

~2 

G0 x : U(~2, y) -- U(~I ,y) .  

Integrating in y C [771, T]2], we obtain 

Similar equalities are true for the partial derivatives Uy, vx, vy. Hence, we have 

(21) 
II 

OH OH OH 

Now recall that  the function f(z) is C-differentiable almost everywhere in rl 

and hence equations (1) are satisfied almost everywhere in H. Therefore, both 

terms in the left-hand side of (21) are equal to 0, which yields 

f (z )dz  O. . 
OH 

Now the proof of Theorem is completed in the following way. By Lemmas 

1 and 2 the function f(z) is C-differentiable in D and has there the derivative 
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f~(z) which is integrable over D. In addition, f satisfies by Lemma 3 the N- 

property on almost all lines parallel to the coordinate axes. Since, by Lemma 

4, 

f f (z)dz = 0 

OH 

for an arbitrary rectangle H, it follows from the classical Morera's theorem that  

f (z)  is complex analytic on the domain D. 

Remark: The inequalities (7) and (8) admit generalization to wider classes of 
the mappings (see [2]). 
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