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ABSTRACT

The condition providing the analyticity for continuous locally univalent
functions of complex variables is established. This generalizes the classi-
cal Menshoff result on homeomorphic mappings preserving infinitesimal
circles.

1. Introduction

The relationship between the basic properties: continuity, monogeneity (exis-
tence of a complex derivative) and analyticity of a function of complex variables
has been studied in classical and modern function theory by many mathemati-
cians. Interest in questions of this type has increased in connection with con-
structing a theory of quasiconformal mappings and generalized analytic func-
tions. The aim of the paper is to present a new condition which provides the
analyticity of functions.

As is well known, the analytic functions of a complex variable possess var-
ious characteristic properties; each of those can be regarded as a definition of
analyticity. Such properties are, for example: the monogeneity, conformality of
mapping, the conditions of Morera’s theorem, uniform approximation by poly-
nomials, etc.

The classical Cauchy—~Goursat theorem says (see, e.g., [8]):

If a function f(z) of a complex variable z is continuous and monogenic in a
domain D C C, then it is analytic in D.
In the terms of real variables, this theorem is formulated as follows:
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A continuous function f(z) = u(z,y)+iv(z,y) is analytic if the functions u(z,y)
and v(z,y) are differentiable, and Cauchy-Riemann equations

ou Ov Ou ov
(1) =

are satisfied everywhere in D.

9r 9y 9y Oz

The monogeneity of f(z), i.e., the existence of the limit

) tim TEXNZTE) _ i),

is equivalent to the existence of both the limits

| flz+h) = f(2)

lim |22~ JAS)
®) hed h
(independence of stretching from direction) and
flz+h) - f(2)

h

(preserving the angles) at the points where f'(2) # 0.

(4) lim Arg

Various generalizations and improvements of the Cauchy-Goursat theorem
were obtained by Pompeiu, Looman, Montel, Menshoff and other mathemati-
cians. Those rely on weakening the condition of monogeniety. It was natural to
find the characterizations of analytic functions either only in terms of stretching
at a point or only in terms of preserving the angles.

The first step in this direction was the following theorem of Bohr [1]:

If w = f(2) is a continuous locally univalent mapping of a domain D, for which
a finite limit (3) exists and differs from 0 at almost every point of D, then either
the function f(z) or the conjugate function 7@ is analytic in D.

The next important result is the following theorem of Menshoff [3] based on
the second fundamental property of a monogenic function (on preserving the
angles).

If @ mapping w = f(z2) is continuous and locally univalent in a domain D and
if at almost every point of D, finite limit (4) exists, then the function f(z) is
analytic in D.

Using quasiconformal mappings, Menshoff has obtained in [4] another gener-
alization of the Bohr theorem. Consider a continuous and locally univalent map-
ping w = f(z) of a domain D of the z-plane onto a domain D* of the w-plane.
For an arbitrary point zy € D, take the circle C(z,7) = {2: |2 — 20| =7} C D,

and put
MAX| 2/ — zg|=r |f(z/) - f(Z0)|

HGom) = i aior 1) — o)l
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We say that the continuous locally univalent function f(z) maps the infinitesimal
circle C(zg,r) into an infinitesimal circle, if

lim H(zp,r) = 1.
r—0

Obviously, the last condition is more general than (3). The important Men-
shoff’s generalization of Bohr’s theorem is the following result.

If a function f(z) is continuous and locally univalent in a domain D and maps
the infinitesimal circles C(z,7) into infinitesimal circles for almost all points

z € D, then either f(z) or f(z) is analytic in D.

2. Radii of normal neighborhood systems

We shall need the following notation.

Let z be an arbitrary point in C. Assume that some closed neighborhood
Gi(2) of z is defined for any ¢ € (0,1]. We say that a set of the neighborhoods
Gi(#) of the point z constitutes a normal system, if there exists a continuous
function v: C — R such that v(z) = 0, v(¢) > 0 for any ¢ # 2. Here G;(2) =
{¢ € C: v(¢) <t} for any t € (0,1]. Let T'y(2) = {¢ € C: v(¢) = t} denote
the boundary of G¢(2). The function v is called the generating function for
a given normal system {G:(z)} (see, e.g., [6]).

Denote

r(z,t) = ce‘ﬁf(z) I =2, R(zt)= i ¢ — 2.
These values r(z,t) and R(z,t) are equal, respectively, to the minimal and the
maximal radii of the neighborhood G;(z). The limit

o R(zt)
(5) Az) = hrtnjélp D)

is called the regularity parameter of the family {G;(2),0 < ¢t < 1}. Any such
system {G;(z)} is called the regular normal system, provided A(z) < oo.
Let now f: D — D* be a homeomorphism of two bounded domains in C, and
let {G:(z)} be a normal system of neighborhoods of z € D. One can introduce
similarly the minimal and the maximal radii for the image of G;(z2) by

r(zt)= _inf [f(() - f(2)l, R*(z,t)= sup [|f({)— f(2)l

CET:(2) CeT(2)

and
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In these terms Menshoff’s theorem says:
If a function f(z) is continuous and locally univalent in a domain D and if
A*(z) =1 at almost every point z € D, then f(z) is analytic in D.

3. Main result

We now present an essential strengthening of the previous classical theorems.
Let p be a real fixed number such that 1 < p < co. Put

mf(B(z, R(2,1)))
7R2(2,1) ’

(6) 0(2) = lim

where B(z,h) is the disc {¢ € C: |{ — z| < h}, and mA denotes the Lebesgue
two-dimensional measure of a set A.

THEOREM: If a function f(z) is continuous and locally univalent in a domain
D, and for almost every point z € D there exists a normal regular system of
neighborhood {G:(2)} C D such that either the inequality

) R*(z,t) fR(z,t)\P1 —p
(7) hrtnjéxp r(z,t) (r*(z,t)) SCO

holds for 1 < p £ 2 or the inequality

) < [o(a))-2

.
(8) im sup et <

t—0

G we

holds for 2 < p < oo, then either f(z) or the conjugate function f(z) is analytic
in D.

We shall prove the assertion of the theorem for the function f(z) itself,
assuming that f is orientation preserving. The proof for f(z) is accomplished
in a similar way.

The next remark is that for definiteness we can restrict ourselves by the case
of inequality (8), i.e., by 2 < p < co. The case 1 < p < 2 involving the inequality
(7) is treated in a similar way.

We precede the proof of the theorem by several lemmas.

LEMMA 1: Under the assumption of Theorem, the function f(z) is differentiable
almost everywhere in D, and for any Borel set E C D we have

9 /|f’(z)|2dxdy < .
E



Vol. 156, 2006 ON GENERALIZATION OF MENSHOFF’S THEOREM 247

Proof: Denote
k(z) = limsup flzth) = 1) .
h—0 h
To show that f(z) is differentiable almost everywhere in D, one must verify,
in view of Stepanov’s theorem [7], that k(z) < oo almost everywhere in D.
Consider a sequence {zp}, n = 1,2,..., of points 2z, € D such that z, — z as
n — 00, 2, # z for all n, and

'f(zn) - f(z)l/]zn - Z} - k(z) as n — o<.

Let v be the generating function for the system of neighborhood G; = G;(z).
Put t,, = v(z,) and w, = f(z,). Obviously, 2, and w,, are the boundary points
of G;, and f(G, ), respectively, and

lzn — 2| 2 r(2,tn), |wn—w| < R*(z,t,).

This yields
Jwn, — w| < R*(z,tn)
10 lzn — 2| = rlztn)
(10) _ [(R*(z,tn))P-l 'R(z,tn)]l/(P—l)[r*(z, tn)]l/(p—l)
- r(z,tn) r*(2,ty,) R(z,tn)

The set G;, is contained in the disc centered at z with radius R(z,t,), while
f(G, ) clearly contains the disc of radius 7*(z, t,,) centered at w. Thus we obtain

<T*(z’tn)>2 < mf(B(z7R(Z)tn)))
R(z,tn) mB(z,R(z,tn))

Substitute this bound for the ratio 7*(z,t,)/R(z,t,) into (10) and let n tend
to infinity. Therefore the limit of the first factor in the right-hand side of (10)
can be estimated by (8), which provides as a result the inequality

(11) k(z) < ©'2(2).

By Stepanov’s theorem, f has a total differential at almost all points of D.

To establish (9), observe that the equality (6) can be regarded as the dif-
ferentiation of the set function mf(B(z, R(z,t))) over discs. By the Lebesgue
theorem (see, e.g., [9], p. 82), this limit exists and is finite almost everywhere
in D. Moreover, for every Borel set £ C D, we have

[[ e@idady < mi()
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Combining this with inequality (11), one concludes that

/ | () Pdady < mf(E) < co.

E
The lemma is proved. |
Following (8], we call the complex number ¢ a derived number of the

function f(z) at the point z if there is a sequence of numbers {Az,},
Az, —0,n=1,2,..., such that

: f(z+Azn)—f(z)__
nll»nc}o Az, =&

Let f be differentiable at a point z € D. Take Az = Az + iAy = |Az|e** so
that z + Az € D. Noting that

Af = f(z+ Az) — f(z) = f,Az + fz:AZ + 0o(Az),

here .
- r=3(Gmr 5 1G5
15} ad ; (0 o
)
and

: Af___ —2ia
Ao Ry = fe A S e

one obtains that the absolute values of the smallest and largest derived numbers
of f(2) at z are equal, respectively,

b =1fl = 1fell, Ly = + |2l

LEMMA 2: If f is orientation preserving and satisfies the condition of Theorem,
then for almost all points z € D we have equality

| ] + | /]

|fz] = |fz]
Proof: Let z be a point of D at which f is differentiable. Fix Az so that
20 + Az € D. For simplicity of notations, we can assume that f(zp) = 20 =0
as well as

=1

l%—jz—cl — Ly and ‘%‘ — 1l as Az—0.
This can be achieved by a suitable choice of the coordinate axes.

Choose the values a(t) > 0 and b(t) > 0 so that a(t)Az € TI';(0) and
b(t)Az € T't(0). Then

r(0,t) <la(t)Az|, R(0,) 2 [b(t)AZ],
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r*(0,t) < |f(b()AZ)|, R(0,t) > |f(al(t)Az)].

Combining these inequalities with (8), we obtain

(| f(a(®)Az)[\P-1 |b(t)AZ]|
(12) tm ( la(t)Az] ) F(0)D2)

| < [@(0)](p—2)/2_

In view of differentiability at 0, the quantity ©(0) is equal to the Jacobian of f
at 0, and
@(0) = J(Oaf) = |fz|2 - |f2l2 > 0.
Then (12) yields
LOLEEON
101 =101

CoOROLLARY: The function f(z) is C-differentiable almost everywhere in D.
LEMMA 3: The function f is absolutely continuous on lines (ACL).

Proof: Let II be an open rectangle whose sides are parallel to the coordinate
axes and let II C D. Denote the vertices of II by & +inm, k,m = 1,2. We shall
prove that for almost all y € (71,712) the mapping f admits the N-property on
the segments p(y) connecting the points z; = £; + ¢y and 22 = & + iy. This
means that the image of every set on p(y) of zero measure also has measure
Zero.

Fix for z € D a normal regular system {G:(z)} of neighborhoods of z such
that G,(z) C D for any t € (0,1]. It follows from (8) that for sufficiently small
t > 0, we have

R (2 )\P-L R(5,1) _ [¥(B(2,R(z1)))]0-2/2
(13) ( () ) (nt) = [mB(z,R(z,t)) [
where
(14) U(A) = mf(A) + 5(O)mA;

here 4(t) — 0 for t — 0. It is easy to show that

, ¥(B(z,R(z 1))
1 —_— = .
H?_?(l)lp mB(z,R(z,1)) 6(2)
Put ®(A) = mf(A) and denote by I the projection of II onto the coordinate
axis y. Note that IT = p(y) x I. Using the set functions ® and ¥, we define the
functions of open sets A C I, letting

®(4) = 2(Axp(y)), ¥(4)=T(Axp(y)).
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It follows from [5] that for almost all y € I the values

~ . ®(Bi(y,h -, . U(By(y,h
where By(y,h) = {z € I : |Imz — y| < h}, are finite.

Now we suppose that, for some y, the function f does not satisfy the N-
property on p(y) and reach a contradiction. In view of our assumption, there
is a closed set E C p(y) of zero measure for which H;(f(E)) > 0, where H; is
the one-dimensional Hausdorff measure in C. We shall show that in this case

we must have
[0 D@ )] 20 = oo

To this end, fix a positive integer k, and let Ey be a set of all { € F for which
7(¢,1) > 1/k. Since E =32, Ex, f(E) = Upeq f(Ek), we have

H\(f(E)) < Hi(f(Ex)).
k=1

The assumption H;(f(F)) > 0 yields that Hy(f(Ex)) > 0 at least for one k.
We fix such & and put v = H1(f(Ex)). Then for every system of discs covering
f(Ex) the sum of their radii is not less than /2.

Let us divide the low side of [{;, &z of the rectangle II (and simultaneously
the interval p(y)) into 2N equal parts, choosing an integer N > 0 so that

-4 1

5N K
Let Vv be the union of all segments in the partition which contains points of
E. Since the one-dimensional Lebesgue measure of the set E equals 0 and this
set is closed, it follows that m;Vy — 0 as N — oo. For any ¢ > 0, there exists

an integer Ny(g) > 0 such that
(15) leN <eg

for any N > Np. We fix ¢ and suitable N > Ny for which the inequality (15)
holds.

Select on Vi all segments which contain the points of E; and choose on each
E; one of its points. Denote these points by

Cly-osGy, 1<I<2N.
Now divide the segment p(y) into 2N (n + 1) subintervals

(16) 01,01,---,02N(n+1)
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choosing n so large that it dominates all regularity parameters of the families

{Ge(Gi)} (see (5));
n>AG), 1=1,...,1L

Fut p= £2-&

2N(n+1)
For each ¢ = 1,...,[, there is a value t; € (0,1) so that r((;,t;) = p. The
sought value ¢; can be found as follows. Let v; be the generating function of the
neighborhood system {G;(¢;),0 < ¢ < 1}. Then the largest value of v; in B(;, p)
is equal to the desired value t;. Denote G; = Gy, ((;). The sets G;,i = 1,...,1,
cover the original set Ey. Since the disc of radius R*({;,t;) centered at f((;)
contains the set f(F,, NG;), we obtain

l

> R (Cints) 2 /2

i=1
Now, following [4], we distribute the segments (16) onto 2(n + 1) classes,
sending the segments

0-2(n+1)j+sv j=011a"'aN_1$

into s-class, s = 1,2,...,2(n + 1). Simultaneously, the points (j,...,{; are also
distributed onto these 2(n + 1) classes.
After such an operation, we obtain that at least for one of these partition

classes
q
(17) D R (Gti) 2v/4k+1), ¢<l,
i=1
and
gp <miVy <&
here (1,...,{, are all the points of this class.

By the above construction, we have

b4 L4 né-6&)
=Gl 2T R E D T Ner )

for any i # j,i,j < ¢q. Note that the discs B((;,np) are disjoint and G; C
B((i, kp); hence G; are also disjoint. Consider now the rectangle II, =
Bi(y,np) x p(y). Since the set f(G;) contains the disc B(f(¢;), 7*(Ciyts))s

q
(18) o(1,) > wzr”(cz-, t;).

i=1



252 A. GOLBERG Isr. J. Math.

For sufficiently small ¢; > 0, the inequality (13) implies the relation
R*(Gits) <
=P R2E=DIG(B(;, (G, 1)) P2/ 20D 7Y (¢ )RV, 1) (G 1)

for every i = 1,...,¢. Summarizing these inequalities and applying Holder’s
inequality with the degrees (p — 2)/2(p — 1), 1/2(p — 1), and 1/2, one obtains

q
(19) D R (Girti) <
i=1
(2-p)/2(0-1) [ 4 (-2)/2(p-1)p 9, 1/2(p—1)
%‘—[ ‘I’(B(Ci,T((i,ti)))] [Zr* (Cz-,t,-)] g2

i=1 i=1
The first factor in the right-hand side of (19) can be estimated applying the
relation (14). The second one is estimated by (18). This results in

ZR* Cirti) < \/_[ (11 p)](ZD—2)/2(P—1)[(I)(Hp)]l/2(l’—1)q1/2_

Combining this inequality with (17), we set the low estimate
[\I/(Hp)](p—2)/2(p—1) [q>(1]p)]1/2(p-1) . ¢
2np np = a7

with a constant ¢ not depending on N. Taking into account that gp < € and
letting p — 0, we obtain

(20) (B (y))P=2/2=1) (@ ()] /2~ 1) > m

The inequality (20) must hold for arbitrary € > 0. This yields that for every
point y € I, we have the equality
(@] P2/ D@ (/20D = o,

which contradicts the fact that the derivatives ¥'(y) and &'(y) exist and are
finite almost everywhere on I.

This contradiction proves that the mapping f admits the N-property on p(y)
at almost all points y € I. |

LEMMA 4: For a rectangle I1 € D with the sides parallel to the coordinate axes,

af f(z)dz =0.

we have the equality
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Proof: By Lemma 1 the derivative f'(z) is integrable over any Borel set E € D,
Le. [[|f'(2)|dzdy < co. This implies that all partial derivatives du/dx, du/dy,
Ov/dz, Bv/dy are also integrable. Consider an arbitrary rectangle II € D
with the sides parallel to the coordinate axes. Denote its vertices by & + inm,,
k,m = 1,2. Then, by Fubini’s theorem,

// d:z:dy—/dy/-dﬂE (u = Re f(z)),

m &

where the inner integral exists for almost all y € [n1,72]. On the other hand, the
function u(z,y) is ACL in II, i.e. u(z,y) is absolutely continuous with respect
to z for almost all y € [7,72]. Thus

/—dx = u(&2,y) — u(é1,9)-

Integrating in y € [n1, 2], we obtain

T2

/dy/—dw—/ (§2,9) — u(&r,y))dy = }{udy-

T &1 2314

Similar equalities are true for the partial derivatives uy, vz, vy. Hence, we have

8u
// ——+— dmdy+z// %—51—/ dxdy
}{udw—vdy-kz}{vdx-f-udy—%f

on on

(21)

Now recall that the function f(z) is C-differentiable almost everywhere in I1
and hence equations (1) are satisfied almost everywhere in II. Therefore, both
terms in the left-hand side of (21) are equal to 0, which yields

?{ f()dz=0.
oIl

Now the proof of Theorem is completed in the following way. By Lemmas
1 and 2 the function f(z) is C-differentiable in D and has there the derivative
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f'(z) which is integrable over D. In addition, f satisfies by Lemma 3 the N-
property on almost all lines paralle] to the coordinate axes. Since, by Lemma

4,
}{f(z)dz =0
on

for an arbitrary rectangle II, it follows from the classical Morera’s theorem that
f(z) is complex analytic on the domain D.

Remark: The inequalities (7) and (8) admit generalization to wider classes of
the mappings (see [2]).
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